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The effective-medium theory beyond the nearest-neighbour 
interaction 
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Department of Physics, University of Jyvaskyla, SF-40100 Jyvaskyla, Finland 

Received 6 June 1989 

Abstract. The effective-medium theory has been extended to include more than the nearest 
neighbours in the total energy calculation of a metallic system. This extension has been 
tested by molecular dynamics simulations of thermal expansion and melting of copper. The 
calculated thermal expansion coefficient, melting point, latent heat of fusion and diffusion 
constant of the liquid phase are in good agreement with experimental data. In the liquid 
phase it is necessary to go beyond the nearest-neighbour interactions. 

1. Introduction 

The development of atomistic models suitable for Monte Carlo and molecular dynamics 
simulations of metallic systems has roused great interest during the past two decades. 
The early pairwise models failed to describe many properties of metals arising from 
the electronic interaction. The electronic interaction has a many-body nature and the 
total energy of a metallic system cannot be calculated by simply summing interactions 
between pairs of atoms. The first attempt to include many-body interactions was the 
use of the pseudopotential theory which gives a structure-independent volume term to 
the total energy of the system (Harrison 1966, Ashcroft 1972). This term describes 
the cohesion arising from the homogeneous conduction electron gas. However, the 
volume-dependent term can lead to difficulties in simulations of surfaces and extended 
crystal defects, where the volume of the sample is ambiguous. Moreover, the sample 
can contain large density gradients, and the model of the homogeneous conduction 
electron gas becomes less suitable. 

At the beginning of 1980s, a new idea on how to calculate the total energy of 
a metallic system was presented. The essential difference compared to the previous 
approach is that the electron density of the sample is allowed to vary from one lattice 
site to another. The main part of the cohesion at a given lattice site depends on 
the local electron density at this site. This idea was first applied to the calculation 
of the binding energy of impurities and adsorbates interacting with metals (N~rskov 
and Lang 1980, Stott and Zaremba 1980, N~rskov  1982). Later on, this approach 
has led to a whole new class of potentials: the ‘embedded-atom method’ (EAM) (Daw 
and Baskes 1983, 1984), the ‘Finnis-Sinclair potential’ (FS) (Finnis and Sinclair 1984), 
the ‘effective-medium theory’ (EMT) (Jacobsen et a1 1987, Manninen 1986) and the 
‘glue model’ (Ercolessi et a1 1986). In all these models the total energy of the system 
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composed of N atoms can be written as 

where V(rij) is a pair potential, ni is a quantity describing the local density at the atomic 
site i and F ( n i )  is the corresponding energy term. The local density ni is dependent 
on the distances from atom i to its neighbours, and in this way F ( n J  is structure 
dependent and implicitly includes many-atom interactions. 

The functional forms of n, F and V as well as their physical interpretations are 
different in each of the models mentioned above. In the semi-empirical EAM (Daw and 
Baskes 1984) and in the related model of Finnis and Simlair (1984), the pair potential 
term is purely repulsive and interpreted as the screened Coulomb repulsion between 
positive ion cores. The cohesion comes from the energy function F ,  which describes 
the ‘embedding energy’ of atom i in a homogeneous electron gas of density ni. The 
embedding energy is negative and proportional to the square root of the density n 
mimicking the tight-binding model. The parameters in n, F and V are determined 
using experimental data from the solid phase. The EAM and FS models have been used 
in simulations of transition metal surfaces and liquid transition metals (Foiles 1985, 
1987, Ackland and Finnis 1986). 

The glue model (Ercolessi et al 1986) is a purely empirical potential, which has 
been optimised to reproduce a great deal of experimental data on the solid phase of 
gold. In this model, n is a ‘generalised coordination’ and the energy function F is 
negative, having a minimum with n = 12, the coordination in an FCC lattice. The pair 
potential V has both a repulsive and an attractive part. The glue model has been 
used to simulate the structure and melting of low-index surfaces of gold (Ercolessi et 
al 1986, 1987, Carnevali et a2 1987). It also describes well the liquid phase of gold 
(Iarlori et a1 1989). 

The potential derived from the EMT has been built up in a somewhat different 
way than the EAM and the ‘glue’, although the EMT can also been written in the form 
of equation (1). The EMT is purely theoretical but there are still many ways to do 
approximations in the derivation of applicable formulae (like the type of equation (1)). 
The ‘standard’ form of the total energy in the formalism of Jacobsen et al (1987) is 

i=l 

The first term in equation (2) is a cohesive energy term which depends on the embedding 
energy (Puska et al 1981) of atom i in a homogeneous electron gas of local density fii.  
The second term is the so-called atomic sphere correction, which is explained in 52. The 
effective-medium theory also contains one-electron energy terms, which are important 
in transition metals due to partially filled d bands. It is assumed that in non-transition 
metals like aluminium and copper the one-electron terms can be neglected (Jacobsen 
et al 1987, Manninen 1986). The EMT model has been applied to simulations of the 
thermal expansion of aluminium (Stoltze et al 1987) and the melting of the aluminium 
(110) surface (Stoltze et al 1988). 

The range of the potentials presented above is short, including generally only atoms 
within the nearest- (or next-nearest-) neighbour radius in the ideal lattice structure. 
This is an advantage for the computational efficiency, but restricts the use of the models 



EfSeective-medium theory 9767 

in some situations. For example, the nearest-neighbour formalism of EMT gives no 
energy for the stacking fault in the FCC lattice. Thus the processes depending on this 
stacking fault energy cannot be studied (Ackland et a1 1987, Hakkinen et a1 1989). It is 
also necessary to extend the EMT beyond the nearest neighbours for high-temperature 
dynamic simulations, where the symmetry of the ideal FCC lattice is heavily broken. 

In this paper we present a way to extend the EMT beyond nearest neighbours 
for dynamic simulations. We have tested the extended model by molecular dynamics 
simulations of the thermal expansion and melting of copper. The calculated thermal 
expansion curve and the coefficient of thermal expansion at room temperature are 
in good agreement with the experimental data. The melting temperature and the 
coefficient of self-diffusion in the liquid state are also close to the experimental values. 

2. Effective-medium theory 

A detailed derivation of the energy expression ( 2 )  has been given by Jacobsen et a1 
(1987) and a discussion emphasising the physical picture arising from this theory is 
given by Jacobsen (1988). Only the main outlines of the nearest-neighbour effective- 
medium approach are presented in 42.1. Section 2.2 deals with the extension of the 
EMT model to include more than the nearest neighbours. 

2.1. The nearest-neighbour formalism 

In any theory explaining the density-dependent electronic cohesion the starting point 
has to be the choice of the ansatz describing the electron density n(r). In the EMT, this 
ansatz is 

N 

n(r )  = c A n i ( r )  
i= 1 

(3) 

which says that the total electron density is a superposition of electron densities An 
associated with each atom. In EMT An is estimated from the atom-induced density 
when it is immersed in a homogeneous electron gas. The atom embedded in a lattice 
site i feels a background density Ai coming from all other atoms in the system. This 
background density is approximated as being uniform in the region occupied by atom 
i and its value is calculated as a spherical average over a neutral sphere of radius si 
centred at the lattice site i :  

where R, is the position vector of neighbouring atom j and NN means a nearest- 
neighbour sum. In a perfect lattice the sphere of radius si equates with the definition of 
a spherical Wigner-Seitz cell associated with each atom. The requirement of neutrality 
results in a unique correspondence between the background density Ai of atom i and its 
Wigner-Seitz radius si. A good approximation for this relationship is an exponential 
dependence 

A(si) = no exp[-q(si - so)] ( 5 )  
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where no, q and so are constants. The average induced density coming from an atom 
at a distance r can also be approximated by an exponential relation (with constants 
Ano, and ~ 2 )  

Afi(si, r )  = Ano exp(qlsi - q 2 r ) .  (6) 

In the ideal FCC lattice each atom has 12 nearest neighbours at a distance of ps, where 
p = ( 1 6 ~ / 3 ) I / ~ / &  is a geometrical factor. Equation (4) then gives for a perfect lattice 

(7) 

from which AAo and the relationship between q,  q1 and q2 can be determined: q = 
pvz - q , .  When the lattice does not have an ideal FCC symmetry, the neutral sphere 
radius si varies from one lattice site to another. For atom i it can be solved by replacing 
the right-hand side of equation (7) by the nearest-neighbour sum xjfi An(si, r i j ) ,  where 
rij  is the distance between atoms i and j. This procedure gives an explicit rij  dependence 
for s i :  

$si) = 12AA(si,r = psi) 

N N  - 

When si is inserted in equation (5) the explicit rij dependence of A, can be written as 

The cohesive function E ,  (the first term in equation (2)) is parametrised by a third-order 
polynomial 

3 

E c ( 4  = E,  + E ,  (t - 1): + E ,  (Z - 1) 

When the symmetry of the ideal FCC lattice is broken, the overlap of the neighbouring 
Wigner-Seitz spheres becomes important. The energy arising from this overlap is the 
so-called atomic-sphere correction, which is the second term in the equation (2). For a 
non-transition metal the atomic-sphere correction can be approximately written in the 
form 

N NN 

E,, = c ( E A ,  - v (Iij)) 
i= 1 j # i  

where V ( r i j )  is an explicit nearest-neighbour pair potential and ci is an integral of the 
electrostatic potential A+ over the neutral sphere of radius s :  

n 

cx = d, A+(.) dv. 

The pair potential V can be solved by demanding that the atomic-sphere correction 
vanishes in the ideal FCC lattice. That gives 
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where i i(si)  is determined from (7). The overlap energy can then be calculated as a 
function of atomic positions from the expression 

The total energy of simple metal systems can now be calculated from the positions 
of atoms using equations ( 2 ) ,  (9), (10) and (14). So far the parametrisation for the 
EMT potential has been published for aluminium and copper (Jacobsen 1988). A 
very appealing property of the effective-medium theory is that all parameters can be 
calculated from the density functional theory using the local density approximation. 
In practice, however, for reasons explained by Jacobsen (1988) it is more reliable to 
determine q I  from experimental data. 

2.2. The extension beyond nearest neighbours 

In strongly distorted systems, for example in liquid metals, the nearest-neighbour sum 
becomes ambiguous. One way to overcome this problem is to use a Fermi-type cut-off 
function going to zero between the first- and second-neighbour distances of the perfect 
lattice. This scheme was used in the dynamical simulation of aluminium surfaces by 
Stoltze et a1 (1988). However, this artificial cut-off does not extend the range of the 
interaction in EMT and excludes applications where the long-range interactions are 
essential. A method for including more than the nearest neighbours in the total energy 
calculation was outlined in the appendix of Jacobsen et a1 (1987). We have studied 
this extension and tackled the problems arising from it. 

The essential point in the extension of effective-medium theory is to generalise the 
expression for the background density (4) in the proper way. The generalisation is made 
by assuming that the ideal FCC lattice is space-filling, just like in the nearest-neighbour 
formalism (i.e. the charge densities of holes and overlaps between Wigner-Seitz spheres 
associated with ideal FCC lattice points equal each other). The background density is 
then 

where Nk is the number of kth neighbours and Rk is the corresponding distance. This 
equation replaces (7) and defines a new At?. However, the same parametrisation (6) is 
used. By using equations (5) and (6) and by demanding the relationship q = f lq2 - q l  
we get for Ano 

Ano = ___ 110 
12y, (Si) exp(qso) 

where 

In the general case, when the summation is no longer an ideal FCC sum, the neutral 
ionic radius for atom i is equation (8) corrected by the factor y , ( S ) :  
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where s is a properly chosen average value of si (see below) and the background density 
is 

The atomic-sphere correction is again obtained by demanding that in the ideal FCC 
lattice it must vanish. This gives 

where 

For the molecular dynamics, the total force acting on a given atom has to be determined. 
For this purpose, it is useful to write the total energy (2) in the form 

where 

is the pair potential and 

E,.$@) = E&) + 9 3  (24) 

is the density-dependent many-body potential. The total force acting on atom i is then 

(25) 

where the prime in each function means a derivative with respect to the argument of 
the function in question. The first term is the force coming from the change in density 
at site i due to the movement of atom i itself. The second term is the force coming 
from the change in density at neighbouring sites when atom i moves. The third term 
is the conventional pair force. 

causes the theory to have a self-consistency problem. 
The normal way to overcome this problem would be the iterative solution of si and 
y ,  for each atom (i.e. in (18) 3 would be si). However, this procedure would greatly 
increase the amount of computation, since for each step of the molecular dynamics 
equations (17) and (18) would have to be solved separately for each atom. For this 
reason we have used a faster method: (i) determine the value of y, using the neutral 
sphere radius so, which is the Wigner-Seitz radius corresponding to the equilibrium 

The si dependence of factor 
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lattice constant at zero temperature; (ii) calculate the average value S of si using yl(s,) 
from (18); (iii) calculate y , ( S ) ,  " J ( S )  from equations (17) and (21) and use these values 
for each atom. In this method y, and y z  still depend on the average value of s i  and 
have to be recalculated in each time step of the molecular dynamics. This also means 
that in expression (22) the pair potential V ( r i j )  depends implicitly on the volume of 
the system. 

The strength of the interactions between atoms falls off exponentially due to the 
exponential ansatz for the induced electron density (6). By calculating the values of 
exponent functions in equation (14) with different FCC lattice distances one can estimate 
the extent of the sum over the nearest neighbours in (15). When this is determined, the 
corresponding y-factors can be calculated from equations (17) and (21). 

In the constant-pressure molecular dynamics simulation the internal pressure of the 
system has to be calculated in each time step. This can be obtained from the potential 
in the usual way: 

where R is the volume of the system. Transforming the derivative with respect to 
volume into the derivative with respect to coordinates of atoms one gets 

. N  

The first term is of the form xi,. F y  .yy ,  which appears, in fact, in the virial theorem 
of the real gas (Landau and Lifshitz 1970). When the range of interactions is beyond 
nearest neighbours there is an extra term, P7,, on the right-hand side of equation (27) 
arising from the fact that the factors y1 and yz  depend on the average equilibrium ionic 
radius S and thus on the volume of the system as explained above. In the constant- 
pressure simulation the volume of the system is continuously fluctuating and this extra 
pressure term becomes important. In fact, we found that by omitting this term the 
equilibrium lattice constant of copper at zero temperature would be shortened by a 
few per cent in the extended model compared to the nearest-neighbour calculations, 
and the thermal expansion curve would no longer be realistic. The extra pressure Py is 

This formula is based on the notion that the volume of the system can be written as 
a sum of N Wigner-Seitz volumes: R = N 4nS3, thus the derivative with respect to R 
can be transformed to the derivative with respect to S.  

3. Thermal expansion and melting of copper 

The effect of extending the range of EMT was tested by simulating the thermal behaviour 
of a copper system by molecular dynamics in the temperature range from 0 K up to 
the melting point at zero external pressure. We used the constant-pressure simulation 
method of Parrinello and Rahman (1980, 1981), which allows both volume and shape 
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fluctuations of the simulation cell. This kind of simulation is a critical test for the 
stability of the potential model. 

The EMT parameters used for copper were (Jacobsen 1988) 

E ,  = -3.56 eV 

q ,  = 0.25 a i ’  

E ,  = 1.35 eV 

r7, = 1.52 a i  

E ,  = -0.237 eV 

c( = 1490eV ai.  
so = 2.5776 a. no = 0.01 15 a i 3  q = 2.50 a i ‘  (29) 

1 

As mentioned in the previous section, the only parameter determined from the experi- 
mental data of copper is q l .  It is estimated from the value of a zone-boundary phonon 
frequency. 

Two sets of simulations were carried out, one with the nearest-neighbour formalism 
in a cubic cell of 256 atoms and the other with the extended formalism (cut-off between 
third and fourth neighbours) in a cubic cell of 500 atoms. Periodic boundary conditions 
were employed in each dimension producing the bulk geometry. The mass parameter 
of the cell was chosen following the criteria of Andersen (1980), resulting in values of 
about 1200 amu for the 256-particle cell and 2400 amu for the 500-particle cell. The 
equations of motion were solved by the predictor-corrector algorithm of Nordsieck 
(1962) and Gear (1971) with a time step of 3.0 fs. Both sets of simulations were started 
from iow temperatures. The system was equilibrated at  each temperature during 2000 
time steps (6 ps) and the thermodynamical averages were calculated during the next 
2000-4000 time steps (6-12 ps). The equilibrium configuration was a starting point for 
the next temperature run. The temperature was raised in steps of 50-100 K between 
subsequent runs until the melting point was achieved. 

0 

/ 

. *  
. 

T i K i  

Figure 1. Lattice parameter plotted against temperature for copper. The calculated values 
with the extended potential are shown by full circles. The open circles show the results for 
the nearest-neighbour formalism. The experimental temperature dependence of the lattice 
constant (Fischel et a/ 1972) is shown as a full curve. The experimental cI:-ve for the liquid 
phase (full curve) is plotted on the basis of the measured densities of liquid copper (Weast 
1985). The arrow indicates the experimental melting point of 1356 K. 

The zero-pressure lattice parameter at each temperature obtained from simulations 
has been plotted in figure 1 together with the experimental thermal expansion curve 
(Weast 1985, Fischel et a1 1972). The numerical data for the lattice parameter are given 
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in table 1. The lattice parameter a has been calculated from the average volume per 
atom U :  

a = (44'3. 

In this way we can define a 'lattice parameter' for the liquid phase also. The nearest- 
neighbour EMT and the extended EMT give identical thermal expansion at low temper- 
atures. The estimated linear coefficient of thermal expansion at room temperature is 
18.1 x IOp6 K-', which is comparable to the experimental value (16.7-17.0) x K-' 
(Pearson 1967, Fischel et a1 1972) and the value of 16.4 x K-' obtained from 
a quasi-harmonic calculation by Foiles and Daw (1988) using the embedded-atom 
method (EAM). In fact, below the Debye temperature (315 K for copper) the quantum 
mechanical quasiharmonic approximation is expected to describe the thermal expansion 
better than the classical molecular dynamics (Ashcroft and Mermin 1976). It is worth 
noting that the zero-temperature lattice constant differs slightly from the experimental 
one because it is an output of the effective-medium theory, not an input as in almost 
all other potentials used in molecular dynamics or Monte Carlo simulations. 

Table 1. Numerical results for the zero-pressure lattice parameter a and the total internal 
energy per atom E at elevated temperatures in Cu. The maximum standard deviations 
(occurring at high temperatures) of T ,  a and E are about 50 K, 0.01 au and 3 meV, 
respectively. 

Nearest-neighbour model Extended model 

T (K) a (au) E (eV) T (K) a (au) E (eV) 

Solid 1 
100 
200 
300 
410 
500 
580 
690 
790 
890 

1000 
1270 
1350 
1410 
1460 

6.596 -3.560 
6.606 -3.535 
6.617 -3.508 
6.628 -3.482 
6.640 -3.453 
6.651 -3.429 
6.662 -3.404 
6.676 -3.374 
6.689 -3.343 
6.706 -3.310 
6.716 -3.295 

6.779 -3.183 
6.762 -3.211 

6.796 -3.157 
6.812 -3.128 

Liquid 1300 7.083 -2.920 
1430 7.219 -2.808 
1520 7.402 -2.711 
1680 7.729 -2.530 

1 
150 
250 
350 
460 
550 
660 
730 
840 
940 

1020 
1150 
1270 
1360 
1410 
1450 
1520 

1200 
1260 
1340 
1480 
1550 
1620 
1690 

6.596 
6.612 
6.624 
6.636 
6.649 
6.661 
6.676 
6.687 
6.703 
6.720 
6.733 
6.756 
6.782 
6.804 
6.820 
6.831 
6.860 

6.901 
6.919 
6.951 
6.993 
7.014 
7.043 
7.077 

-3.560 
-3.521 
-3.493 
-3.466 
-3.437 
-3.412 
-3.379 
-3.357 
-3.324 
-3.293 
-3.268 
-3.226 
-3.184 
-3.147 
-3.125 
-3.109 
-3.070 

-3.069 
-3.044 
-3.008 
-2.957 
-2.93 1 
-2.901 
-2.868 

Our sample melted at between 1458 and 1522 K in the nearest-neighbour simulation, 
the corresponding temperature range being from 1522 to 1546 K with the extended 
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potential. These values contain a statistical uncertainty of about 50 K. The experimental 
melting point of copper is 1356 K (Weast 1985). Due to the superheating the simulated 
melting point can be regarded as an upper limit for the true melting temperature. In 
molecular dynamics simulations with bulk crystals this superheating is usually quite 
large because, due to the finite system size and simulation time, the probability of 
creating thermal crystal defects is extremely small. We have found (in the case of 
aluminium) that the simulated melting temperature of a bulk crystal containing a 
vacancy is significantly lower than that of an ideal crystal (Hakkinen and Manninen 
1989). 

T IKJ Time I p s )  

Figure 2. The mean absolute value of the order pa- 
rameter, l p k l ,  as a function of temperature obtained 
from the simulations with the extended potential. 

Figure 3. Mean square deviation (MSD) of atoms 
as a function of time at the temperatures of 1522 
and 1546 K obtained from the simulations with the 
extended potential. 

The onset of melting was observed by monitoring the order parameter of the system, 
the mean square deviation of atoms and the trajectory plots. At each temperature we 
calculated an order parameter (structure factor) 

N 1 
pk = exp(ik . v j )  

j=1 

where k = (27~/a)[ l l l ]  is the shortest vector in the reciprocal lattice, v j  is the position 
vector of atom j and a is the zero-pressure lattice constant corresponding the temper- 
ature in question. The mean absolute value lpkl at each temperature obtained in the 
simulation with the extended potential is plotted in the figure 2. The sudden fall of 
lpkl to zero is clear evidence of the complete loss of FCC structure between 1522 and 
1546 K. At the same time, the mobility of the atoms is dramatically increased as seen 
in figure 3, which shows the mean square deviation of atoms as a function of time. The 
mean square deviation is defined as 

N 1 
(Av( t ) ’ )  = I v j ( t )  - v j (O) / ’ .  

j=l 
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The coefficient of self-diffusion can be estimated from the asymptotic time derivative 
of the mean square deviation curve: 

(Ar(r )*)  + 6Dt +constant as t + W. (33) 

The value obtained at a temperature of 1546 K is about 5.6 x lo-’ cm2 s-l, which is a 
typical value for a liquid phase (Butrymowicz et aE 1977). 

Another way to search for crystalline order in the sample is to calculate the pair 
correlation function 

V n(r, r + dr) 
N 4rtr2 dr (34) 

where V is the instantaneous volume of the system, n(r,r + dr) is the number of 
neighbours in the distance range ( r ,  r + dr) and ( ) denotes an average over atoms and 
configurations in the molecular dynamics run. However, in figure 4 it is shown that the 
pair correlation functions just before and after melting are very similar. This is due to 
the large thermal motion in the crystalline phase before melting. This vibration smears 
out the clear peaks seen at lower temperatures. The pair correlation function at 1546 
K agrees reasonably well with the experimental data of copper measured just above 
the melting point (Eder et a1 1980). 

b 

4 

PCF 

2 

0 b 12 
r lau) 

Figure 4. Pair correlation functions (PCF) obtained from the simulations with the extended 
potential. The full curve is the result for the solid phase at 1522 K, the broken curve is the 
result for the liquid phase at 1546 K and the dotted curve is the result for the solid phase 
at 545 K. 

It is seen from figure 1 that the extended EMT potential describes the transition from 
solid to liquid better than the nearest-neighbour EMT formalism. The density change in 
melting and the coefficient of volume expansion in the liquid state are comparable to the 
experimental data. The nearest-neighbour formalism gives too large a density change 
and an unrealistically high value for the volume expansion. This is understandable 
because, in the liquid state, the neighbours of any given atom are very mobile, and 
there are large fluctuations in the density if the range of the potential is limited to 
a value giving the middle point of the first and second neighbours in the ordered 
phase. The large density fluctuations arising from the nearest-neighbour formalism 
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might also cause the slightly lower melting point compared with that obtained from 
the simulations using the extended potential model. 

The total energy of the system is given in table 1. From the discontinuity at the 
melting point the heat of fusion of copper in the extended model was estimated to 
be 0.14 eV per atom, which is the same as the experimental value (Weast 1985). The 
nearest-neighbour model gives the result of 0.42 eV per atom, which is much too large. 

In addition to heating, the system was also cooled down from the liquid state to 
find out the hysteresis process involved with the first-order phase transitions. However, 
due to the extremely fast cooling rate, a closed hysteresis loop was not achieved, but 
the sample also seemed to remain in a liquid phase at the temperatures well below the 
experimental melting point. With our fast cooling rate it would not be a surprise if an 
amorphous solid resulted (Laakkonen and Nieminen 1985). 

4. Conclusion 

We have presented one way of extending the range of the potential derived from 
the effective-medium theory. This extension was found to be necessary for dynamic 
simulations at high temperatures and in disordered phases. The validity of our 
extended model is indicated by the good results obtained from the molecular dynamics 
simulations of thermal expansion and melting of copper. 
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